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Transition from vortex to wall driven turbulence
production in the Taylor–Couette system

with a rotating inner cylinder
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SUMMARY

Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with
respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary
and the inner cylinder rotates. A low Reynolds number turbulence model using the k-! formulation,
facilitates an analysis of the velocity gradients in the Taylor–Couette �ow. For a <xed inner radius,
three radius ratios 0:734; 0:941 and 0.985 are employed to identify the Reynolds number range at
which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be
dominated by the out�owing boundary of the Taylor vortex. As the Reynolds number increases, shear
driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small
gaps turbulent �ow is shown to occur at Taylor numbers lower than previously reported. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow between a rotating inner cylinder and a <xed outer cylinder is of interest in several
engineering applications, such as motors, <lters, pumps and journal bearings. The motiva-
tion for this work stemmed from the development of a novel underwater-integrated electrical
thruster unit [1–3]. A signi<cant source of power loss in the electrical thruster arises from
the frictional resistance that occurs between two such cylinders.

This �ow has been studied since Taylor [4] reported the formation of an array of alternating
laminar toroidal vortices at a particular speed dependent upon the geometry of the problem.
The Taylor number is de<ned as

Ta=Re2 d
R1

(1)
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Where Re is the Reynolds number based on gap width,

Re=
Ud
�

(2)

d is the gap width, R1 is the inner radius, U is the speed of the inner cylinder and � is the kine-
matic viscosity. The Taylor number at which these vortices <rst appear is known as the critical
Taylor number, Tac. As the Taylor number is further increased, the �ow changes through vari-
ous wavy and chaotic states to turbulent �ow. Koschmieder [5] stated that when Ta≈ 1000Tac

order emerges from chaotic �ow and the �ow is turbulent with axisymmetric stable uniform
vortices. This corresponded to a Re=4:16× 103 with a radius ratio, �=[(R1)=(R2)]=0:896,
where the outer radius R2 =R1 + d.

The current paper analyses turbulent Taylor vortices in the Reynolds number range 5× 103

¡Re¡5× 104 for three di8erent radius ratios �=0:7246 [6], �=0:9412 [7] and �=0:9846
[1]. Based on an inner radius of 128 mm, which is approximately equal to that in
References [7] and [1], these values of � correspond to a gap width of 48:64 mm, 8:00 mm
and 2:00 mm, respectively. Hence forth, the analysis will refer to the 48 mm, 8 mm and 2 mm
test cases. This paper demonstrates that stable axisymmetric turbulent Taylor vortices occur
for a relatively small gap (the 2 mm case) at Taylor numbers signi<cantly lower than the
value of 1000Tc suggested by Koschmieder. Also, by analysing components in the turbulent
production terms of the k-! model [8] a transition is identi<ed at all three radius ratios as
the �ow becomes more like a wall bounded shear �ow.

Experimental evidence for this transition exists in the detailed torque measurements of
Taylor–Couette �ow from which various semi-empirical equations have been derived. The
two most commonly used are due to Wendt given in Reference [6] and Bilgen and Bou-
los [9]. Both of these sets of equations are based on a power law for Reynolds number,
Re≈ 104.

Wendt’s empirical equations are

G =




1:45
(

�3=2

(1 − �)7=4

)
Re1:5 for 4× 102¡Re¡1× 104

0:23
(

�3=2

(1 − �)7=4

)
Re1:7 for 1× 104¡Re¡1× 105

(3)

where, G =M=��2L; M is the moment, L is the length and � is the density.
Bilgen and Boulos’ empirical equations are

CM =




1:03
(

d
R1

)0:3

Re−0:5 for 5× 102¡Re¡1× 104

0:065
(

d
R1

)0:3

Re−0:2 for Re¿1× 104

(4)

where, CM =M=1=2��U 2R2
1L.
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Wendt’s equations can also be expressed in terms of CM :

CM =




0:923
(

dR2

R2
1

)0:25

Re−0:5 for 4× 102¡Re¡1× 104

0:146
(

dR2

R2
1

)0:25

Re−0:2 for 1× 104¡Re¿1× 105

(5)

Bilgen et al.’s equations are based on the authors’ own experimental data and other data
available in Wendt [6], Taylor [10] and Donnelly and Simon [11]. They collected data in the
Reynolds numbers range 10¡Re¡1× 106 and radius ratios, �=[(R1)=(R2)], ranging from
0:5¡�¡0:988. From this, they deduced four semi-empirical expressions for the skin friction,
CM . The two equations that are relevant to this paper are given in Equation (4), stated to an
accuracy of ±8:35 per cent.

Although numerous studies of Taylor–Couette �ow at low Reynolds numbers have been
carried out (see, for example References [12] and [13]), most are concerned with the formation
of laminar vortices and the various wavy states formed as the �ow becomes chaotic. There
have been a few experimental studies at higher Reynolds numbers; notably visualization work
by Burkhalter and Koschmieder [14], who made detailed vortex wavelength measurements
for several cylinder combinations and Townsend [15], who conducted a series of turbulent
hot-wire probe experiments.

More recently, turbulent Taylor vortices have been studied at high Reynolds numbers us-
ing Laser Doppler Velocimetry [16]. This study used refractive index matching techniques
and showed that Taylor Vortices are still present at Ta=2:107× 109 (Re=73440). Lath-
rop et al. [6] studied the turbulent �ow between concentric cylinders for Reynolds numbers
between 800¡Re¡1:23× 106 with a radius ratio of �=0:7246. While these experiments re-
veal no such Reynolds number change in torque based on a <xed power law akin to that
of Bilgen and Boulos [9], they did show a hysteretic free transition at a Reynolds num-
ber of 1:3× 104. Above this Reynolds number the experiments suggest that the nature of
the �ow behaviour is more like that of open-�ow systems such as those found in pipes or
ducts.

Turbulent Taylor vortex �ow in a centrifugal rotor was studied both experimentally and
computationally by Wild et al. [7]. Two radius ratios were considered, �=0:941 and 0:974 at
Reynolds numbers in the range, 1:5× 104¡Re¡4× 104. For their test cases the experimen-
tal results were in relatively good agreement with the semi-empirical expressions of Wendt
and Bilgen et al. The computational study employed the standard k-� model [17] which
over-predicted their experimental results by 10 per cent or higher. Computations were also
performed using other turbulence models with wall functions; the Renormalization Group
(RNG) model [18] was within 2 per cent of the standard k-� model and the Reynolds Stress
Equation model (RSM) [19] was 40 per cent higher than the k-� model. The RNG model
without a wall function was also 40 per cent higher than the k-� model.

These results are surprising as the RNG and RSM models are generally thought to be more
suitable for �ows with curvature and rotation than the standard k-� model [8]. This may be
due to the fact that the turbulence models are more sensitive to the chosen coePcients and
that these models have not been tuned for this problem. In the present work, as the gaps are
small and the Reynolds number range is relatively low, adjacent grid points to the walls lie
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Figure 1. Schematic section of the geometry.

within the sublayer leading to large inaccuracies with the standard k-� model. To overcome
this problem the Wilcox low Reynolds number k-! model [8] is used.

2. COMPUTATIONAL METHOD

The problem considered is that of steady state turbulent Taylor vortices between a rotating
inner cylinder and a stationary outer cylinder, as shown schematically in Figure 1. The �ow
is solely induced by the relative motion of the inner cylinder. Assuming that the �ow can
be modelled using the Reynolds-averaged Navier–Stokes equations and that the vortices are
uniform and not travelling in waves around the cylinders, the domain can then be simpli<ed
as a 2-D axial slice with a pair of periodic boundaries. Presuming the Taylor vortices are

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:207–226
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Table I. Critical laminar Taylor numbers and wavelengths.

Case � Tac �ZT

2 mm 0.9846 1721 5:01 mm
8 mm 0.9412 1760 20:1 mm

48 mm 0.7246 1981 117:25 mm

symmetrical, a mirror boundary is placed at either end of the vortex. The vortex sizes are
constrained by the length of the domain, which is de<ned as follows.

Chandrasekhar showed in Reference [20] by using linear theory that instability between two
cylinders with the inner cylinder rotating is governed by

Ta=
2

1 + �
· (�2 + a2)3

1 − 16a�2 cosh2(a=2)((�2 + a2)2(sinh a + a))
(6)

where a is the Taylor vortex wave number.
This equation has a minimum, which refers to the critical Taylor number, Tac at which

the vortices are formed. At this critical number, there is an associated wave number ac. This
wave number is given by �=2�=a, where � is a non-dimensional size of a pair of Taylor
vortices, �=QZ=d. QZ signi<es the length of a pair of vortices and d is the gap width.

The turbulent Taylor vortex cell length is highly dependent upon the start-up conditions.
As Burkhalter and Koschmieder reported in Reference [14], the wavelength varied from
20 per cent larger than the critical value during rapid accelerations to 70 per cent larger
during quasi-steady accelerations (accelerations much less than the relaxation time, d2=�).
Many engineering applications employ rapid accelerations so a wavelength for the Taylor
vortices was taken to be 1:25× �. Using Equation (6) and taking the turbulent vortex length
to be QZT =1:25×QZ , the critical Taylor numbers and turbulent wave lengths for the three
test cases examined are given in Table I.

A uniform cell distribution in the axial direction was used as the axial velocity tended to
vary uniformly along the length of one cell. However, a non-uniform expanding and then
contracting grid was used in the radial direction. This was set up to place suPcient cells in
the laminar sublayer, de<ned by, [6]

�1

R1
= 6:32 · (�−1 − 1)2=3 ·Re−2=3 (7)

�2

R2
= 8:16 · (�−1 − 1)2=3 ·Re−2=3 (8)

where �1 is the laminar sublayer thickness on the inner cylinder and �2 is the corresponding
thickness on the outer cylinder. Applying Equations (7) and (8) to the present cases the
widths of the turbulent cores are presented in Table II. The sublayer region comprises a
signi<cant proportion of the gap especially for the 2 mm case.

The Taylor–Couette problem was simulated using a commercial RANS �ow solver [21].
This is a structured multi-block <nite volume code. Turbulence was modelled using the low
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Table II. Comparison of the percentage of turbulent core.

Re 2 mm 8 mm 48 mm

5×103 80 87 92
1×104 87 92 95
5×104 96 97 98

Reynolds number Wilcox Model as described in the following section. The QUICK di8erenc-
ing scheme was used in the SimpleC pressure correction algorithm and Algebraic Multi-grid
was used to accelerate convergence.

To ensure that the solution had converged, residuals were analysed to con<rm that all
components had reduced to a steady state and that there were no oscillatory motions in
the <nal solution. The residuals were normalized with respect to the absolute mean value.
The normalized axial and radial velocities residuals were less than 10−3. All other residuals
converged to less than 10−6.

The 8 mm case was used to test for a grid independent solution at Re=8×103 and
Re=1:6×104. The in�ow and out�ow pro<les were aligned with the vortex end cells in
the 32× 32 case. The velocity pro<le plots are shown in Figures 2 and 3, and the shear
stress is presented in Tables III and IV. The results show good alignment of the mean
pro<les, with small changes in the in�ow and out�ow pro<les with the shear stress co-
ePcient, CM . Therefore, the 64× 64 grid was used for the remainder of the test cases
to save computation cost as increasing the grid density had little improvement upon the
accuracy.

2.1. Low Reynolds number turbulent Wilcox model

Turbulence has been modelled using the low Reynolds number Wilcox Model [8]. Since this
model avoids the use of wall functions, it allows modelling close to the wall and provides
more accurate modelling of turbulent production due to the Taylor vortex formation. The
transport equations for the turbulent kinetic energy, k, and the turbulent frequency, ! are
given by [21]

9
9t �k + ∇• (�kU)=∇•

[(
� +

�T

�k

)
∇k

]
+ P − �!k (9)

and

9
9t �! + ∇• (�!U)=∇•

[(
� +

�T

�k

)
∇k

]
+ C1

!
k
P − C2�!2 (10)

where � is the dynamic viscosity and the constants C1 = 0:5111; C2 = 0:8333 and �k =2
(Prandtl number). The turbulent production term, P is expressed as

P =�T∇U • (∇U+ (∇U)T ) (11)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:207–226



VORTEX TO WALL DRIVEN TURBULENCE PRODUCTION 213

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

u θ/U
Outflow

Mean

Inflow

32x32

64x64

128x128

Figure 2. Pro<le plot for the 8 mm case, Re=8×103.

The turbulent viscosity is de<ned by

�T =C�f��
k
!

(12)

taking C� =0:09 and the damping function f� given by

f� = exp
[ −3:4
(1 + RT=50)2

]
(13)

with a local turbulent Reynolds number

RT =
�k
�!

(14)

When analysing the turbulent energy in the Taylor–Couette system the turbulent production
derivatives in polar coordinates are: (9ur=9x)2; (9u"=9x)2; (9ux=9r)2; (9u"=9r)2; 2(9ux=9x)2,
2(9ur=9r)2; (9ux=9r)(9ur=9x); (9ur=9x)(9ux=9r) and the turbulent dissipation term is �!k,
where the components ur; u"; ux; r and x are the radial, azimuthal and axial velocities and
the radial and axial distances, respectively.
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Figure 3. Pro<le plot for the 8 mm case, Re=1:6×104.

Table III. CM for the 8 mm case, Re = 8×103.

Grid dimensions CV Shear stress

16×16 256 5.30e−03
32×32 1024 4.79e−03
64×64 4096 4.82e−03
128×128 16384 4.83e−03

Table IV. CM for the 8 mm case, Re = 1:6× 104.

Grid dimensions CV Shear stress

16×16 256 4.26e−03
32×32 1024 3.87e−03
64×64 4096 3.70e−03
128×128 16384 3.73e−03
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The low Reynolds number e8ects at the wall are accounted for by applying the exact
solution to the ! equation in the viscous sublayer,

! ∼ 6�
�C2y2 for y+¡2:5 (15)

where y is the distance from the wall, y+ = [(y
√

�$w)=�] and $w is the shear stress at the
wall. To minimize the numerical error of the integration through the sublayer and to ensure
y+ independent results, the <rst 7 to 10 grid points from the walls were positioned between
0¡y+¡2:5 as advised in Reference [8].

3. RESULTS

The results are validated against the empirical equations given by Bilgen et al. and are given
in Table V. For the 2 mm test case the numerical simulations over predict the empirical
relationship by around 20 per cent. The 8 mm case predicted the skin friction almost within
Bilgen et al.’s margin of error, with the exception of the low speed case, Re=5000, where
the CFD analysis over estimated by around 50 per cent. This was possibly due to the very low
turbulent production. The results for the 48 mm test case were inconsistent due to numerical
problems, hence three results are presented for the 48 mm case.

The components of the turbulent Taylor vortex are compared in a series of non-dimensional
pro<le plots either side of the transition for all three test cases. The velocity components,
kinetic energy and the dissipation and production terms have been non-dimensionalized by
the speed of the inner cylinder, U , the square of the shear stress velocity, u$ =

√
$w=� and a

parameter [(�)=(�u4
$)], respectively. These terms are plotted against a non-dimensional radius,

R=[(r − R1)=d] and the length L=[l=d].
The associated Reynolds numbers and <gure numbers describing conditions before and after

transition for all three test cases are presented in Table VI.

Table V. Comparison of CM values between the Empirical equations of Bilgen and
Boulos [9] and the current CFD calculations.

Test case Re Empirical CFD %

2 mm 5000 0.0042 0.0045 8
2 mm 8000 0.0033 0.0039 15
2 mm 10000 0.0030 0.0036 19
2 mm 20000 0.0026 0.0031 16

8 mm 5000 0.0063 0.013 52
8 mm 8000 0.0050 0.0048 −4
8 mm 16000 0.0041 0.0037 −9
8 mm 20000 0.0039 0.0042 7

48 mm 8000 0.0084 0.0067 −25
Square 48 mm 8000 0.0084 0.0084 1
Square 48 mm 20000 0.0065 0.0046 41

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:207–226
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Table VI. List of Re, Ta=Tac and <gure numbers for the test cases
before and after transition.

Test case Before transition After transition

2 mm Re = 5:00×103 Re = 8:00×103

Ta=Tac = 224 Ta=Tac = 573
see Figure 7 see Figure 8

8 mm Re = 8:00×103 Re = 1:60×104

Ta=Tac = 2140 Ta=Tac = 8550
see Figure 9 see Figure 10

48 mm Re = 8:00×103 Re = 2:00×104

Ta=Tac = 8900 Ta=Tac = 55600
see Figures 4 see Figure 5

and 6

At Re=2×104 for the 48 mm case the numeric model was unsteady. Several attempts to
force a converged solution were tried by altering the grid distribution, grid densities and initial
conditions. The only method of achieving a converged solution was by altering the aspect
ratio of the vortex cell size. When the cell aspect ratio was reduced to unity, QZT =96 mm,
the solution converged either side of the transition but with two vortices. This is shown in
Figures 4 and 5. The converged single cell case with an aspect ratio of 1.25 is also presented
in Figure 6 for comparison.

The axial and radial velocity components, ux and ur , for both the 2 mm and 8 mm case are
similar (Figures 7–10). The velocity components are larger for the 8 mm case than for the
2mm case; this is further demonstrated in Figures 6(a) and (b) for the 48mm case where the
maximum non-dimensionalized velocity has doubled. The azimuthal velocity components, u",
are also consistent across Figures 4–10(c) with higher axial gradients than radial gradients
before the transition.

The turbulent kinetic energy plots, k (Figures 7(g) and 9(g)) have maximum peaks in the
radial plane, at the out�ow edge of the vortex. After the transition, Figures 8(g) and 10(g)
have maximum peaks in the axial direction, along the edge of the inner cylinder. This is also
demonstrated in Figures 4(g) and 5(g) with two vortices.

The two most signi<cant contributions, by a factor of approximately 1000, to the production
of turbulent kinetic energy are due to the azimuthal velocity gradients in the radial direction
�T(du"=dur)2 (Figures 4–10(d)) and in the axial direction �T(du"=dux)2 (Figures 4–10(e)).
The test cases show relatively larger peaks in the radial production, vortex boundaries, than
the axial production, wall boundaries, before the transition. The turbulent dissipation, �!k,
also show similar trends as shown in Figures 4–10(f) following the pattern of the turbulent
kinetic energy.

4. DISCUSSION

The present computations clearly show that as Reynolds number increases there is a tran-
sition to a �ow dominated by the wall shear stress, as discussed by Lathrop et al. [6]. At
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Figure 4. Components for square 48 mm case Re=8×103.
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Figure 5. Components for square 48 mm case Re=2×104.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:207–226



VORTEX TO WALL DRIVEN TURBULENCE PRODUCTION 219

Figure 6. Components for 48 mm case Re=8×103.
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Figure 7. Components for 2 mm case Re=5×103.
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Figure 8. Components for 2 mm case Re=8×103.
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Figure 9. Components for 8 mm case Re=8×103.
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Figure 10. Components for 8 mm case Re=1:6×104.
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Figure 11. Schematic drawing of a Taylor vortex indicating areas of high turbulent energy.

lower Reynolds numbers turbulence production is dominated by the out�ow of the Taylor
vortex.

This is represented schematically in Figure 11 where regions PA and PC are associated with
the turbulent wall shear stress production and PB and PC are associated with the vortex in�ow
and out�ow shear stresses, where,

PA¡PB and PC¡PD before transition

PA¿PB and PC¿PD after transition

For the higher Reynolds number cases turbulence production is dominated by the wall shear
stress derivative (9u!=9r)2 signi<ed by PA.

The results suggest that the transition to wall dominated turbulent production occurs at
a lower Reynolds number for higher radius ratios. This can be demonstrated by comparing
Figures 8 and 9. Both these test cases are at the same Reynolds number but the transition has
occurred for the 2mm case but not the 8mm case. This is due to the fact that Ta=Tac is around
75 per cent lower for the 2mm case. Hence the vortex strength is less, see Figures 8 and 9(a)
and (b). This in turn leads to relatively less turbulent production at the vortex out�ow and
in�ow edges, hence the transition occurs at a lower Reynolds number. It is also of interest
to note that the non-dimensionalized radial and axial velocity components are higher before
the transition.

The problem has also been tested using a low Reynolds number k-� model [19]. At
Reynolds numbers below 104 no turbulent energy is produced. For Reynolds numbers be-
tween 1×104¡Re¡5×104 the solution appears to be unsteady. This is possibly due to the
damping function used to implement the low Reynolds number e8ects as opposed to the
adoption of the wall treatment which is applied in the k-! model.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:207–226
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If the end mirror boundaries are replaced with periodic boundaries an axial �ow is developed
instead of the Taylor vortices. Also, unsteady disturbances were produced on the surface of
the inner cylinder, which may be akin to GTortler vortices but which are not distinguishable
in a 2-D �ow.

The SimpleC pressure correction algorithm was also compared with the iterative PISO
approach. In the latter case the laminar boundary layer produced was larger than expected
(approx 40 per cent of the gap width) and consequently, the torques produced were 20 per cent
less than predicted by Bilgen and Boulos [9].

5. CONCLUSIONS

A transition in turbulent �ow in the Taylor–Couette system with an inner cylinder rotating and
a <xed outer cylinder has been identi<ed for a wide range of radius ratios. At relatively low
Reynolds numbers turbulent production is dominated by the �ow between two adjacent Taylor
vortices. A transition occurs as the Reynolds number is increased to a condition where the
shear stress of the rotating cylinder becomes the dominant source of turbulent kinetic energy
production. It has also been shown that developed turbulent �ow can occur for Ta=Tac¡1000
for small gaps and that the transition occurs earlier for these �ows. The results also demon-
strate the applicability of the k-! model to the 2-D simulation of rotating �uids associated
with turbulent Taylor vortices.
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